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INTRODUCTION

Oxidation of CO to CO2 is an important reaction technologically and environmentally and a

complex and interesting reaction scientifically. In most cases, the reaction is carried out in order to
remove CO as an environmental hazard. A major application of heterogeneous catalysts is catalytic
oxidation of CO in the exhaust of combustion devices. The reaction over catalysts in exhaust gas
is fast and often mass-transfer-limited since exhaust gases are hot and O2/CO ratios are high. The

main challenges to catalyst designers are to control thermal sintering and chemical poisoning of the

active materials.

In the application discussed in these proceedings, sealed CO2 lasers, CO oxidation is carried
out in order to recombine CO and 02 formed by dissociation of CO2 in the laser discharge zone.

This application differs from exhaust clean-up in ways that present completely different challenges
to designers of CO oxidation catalysts. Gas temperatures in lasers must be held low, in the range
0°C + 40°C, in order to minimize power consumption and to keep the gas cool in the laser

discharge volume. O2/CO ratios are stoichiometric or less since these species are formed by CO2
dissociation and some oxygen may be consumed in other reactions. Additional 02 cannot be added
to facilitate CO oxidation because the laser discharge is degraded by 02.

Conventional catalysts are not active at low temperatures and low O2/CO ratios. Over
conventional noble-metal catalysts, CO and O2 compete for the same adsorption sites on the metal

surface. At low temperatures and low O2/CO ratios, adsorbed CO blankets the active surface of
the noble metal and prevents 02 adsorption and reaction. Over conventional base-metal-oxide

catalysts, oxygen is held too strongly for it to be removed by CO at low temperatures.

Currently, Pt/SnO2 and related materials are the most promising catalysts for use in sealed
CO2 lasers. Stark and Hams [1] reported significant reaction rates over Pt/SnO2 and Pd/SnO2 at
temperatures as low as -27°C, conditions under which conventional catalysts are inactive. This
report reviews work in the literature on Pt/SnO2 and related materials. Contained in this report are
citations to references 1 through 161.

When Pt and Pd are used in conventional noble-metal CO oxidation catalysts, they are

usually dispersed over A1203. A1203 does not participate in CO oxidation and serves as an inert
support that maintains high noble-metal dispersions. CO adsorbed on the noble metal strongly
inhibits 02 adsorption and, thus, the reaction. In contrast, Bond and coworkers [2,3]
demonstrated that SnO2 interacts synergistically with the noble metal to produce a catalytic activity
that is substantially higher than either component separately. Since CO and 02 have to compete for
the same surface sites over noble metals, it is likely that the mixture of the two components in the

composite NMRO material provides separate sites for CO and 02 adsorption: CO adsorbed on the
metal can react with oxygen held by the SnO2. While this hypothesis is probably part of the full

explanation, experimental evidence for Pt-Sn metal alloy formation [4] and the sensitivity of the
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catalysts to H20 [5,76], suggest that much remains to be learned about low temperature CO
oxidation over Pt/SnO2 and related materials. How Pt/SnO2 works and how more active and
stable materials can be synthesized remain open questions.

David Schryer at NASA's Langley Research Center coined the phrase "noble-metal
reducible-oxide" and acronym "NMRO" to refer to Pt/SnO2 and related materials. The terms
highlight the ease with which SnO2 can be reduced by CO and H2 relative to refractory oxides such
as A1203. As intended by this author, Schryer, and coworkers, the class of NMRO materials

includes a wide range of materials in applications beyond sealed CO2 lasers. The class typically
consists of a zero-valent metal dispersed over or inter-mixed with a metal oxide that can be reduced

to some extent under reaction or pretreatment conditions. Depending on conditions, any of the
Group VillA and IB elements may serve as the "noble metal." The class also includes materials in
which the noble metal is oxidized under some conditions, materials in which some of the metal

oxide may become completely reduced to the parent metal under some conditions, and complex
materials composed of more than a single metal and a single oxide.

NMRO materials often exhibit "strong metal-support interactions," or "SMSI" behavior,
using terminology introduced in the late 1970's by Tauster and coworkers [6, 7]. They applied the
term SMSI to refer to behavior exhibited by Pt-group metals dispersed over TiO2 following high
temperature reduction in H2. Subsequent work, which was reviewed by Vannice at the
NASA/RSRE CO2 Laser Conference in 1986 [8], has shown that SMSI behavior is due to

interaction of partially reduced titania ("TiOx") species interacting with the noble metal. Thus,
TiO2 is a "reducible oxide" and Pt/TiO2 and Rh/TiO2 are NMRO materials. Relative to SMSI, the
acronym NMRO is more specific in the sense that it refers to interactions only between zero-valent
metals and reducible oxides and not between metals and other types of supports. Relative to
SMSI, the acronym NMRO is more general in the sense that it refers to a material itself rather than

a particular behavior of the material. The term NMRO is also more general in the sense that it
includes systems where the reducible oxide does not "support" the metal, for example, materials
with high metal-oxide ratios in bulk form or dispersed over an inert support.

NMRO materials have many important applications, as the examples in Tables 1 through 11
demonstrate. Many of the applications involve oxidation or reduction reactions which involve

transfer of oxygen atoms. In a noncatalytic application, Pt/SnO2 and other materials serve as gas
detectors (Table 1). Reducing gases such as CO chemisorb on the metal, reduce the oxide in a

stoichiometric reaction, and change the electrical characteristics of the oxide, providing the sensor
signal. NMRO materials catalyze CO oxidation in many types of applications (Table 2), and CO,
H2 and hydrocarbon oxidation and NO reduction in automotive "three-way" catalysts (Table 3).
Hydrocarbons can be completely oxidized in catalytic heaters (Table 4) or partially oxidized over
NMRO materials (Table 5). CO2 and CO can be hydrogenated over NMRO catalysts to form
methane and higher hydrocarbons in Fischer-Tropsch processes (Tables 6 and 7). Methanol and
other oxygenated products can also be formed during CO hydrogenation (Table 8). In reactions

not involving oxygen transfer, NMRO materials catalyze reforming reactions of hydrocarbons
(Table 9). NMRO materials also serve as catalytic electrodes in electrochemical processes and
catalyze photochemical processes (Table 10). Miscellaneous applications are listed in Table 11.

An essential aspect of NMRO materials of interest here is that the combination of noble metal

and reducible oxide has a synergistic effect: these composite materials show unique catalytic
activity which is not a simple addition of the characteristics of the separate materials. Synergistic
effects have been demonstrated over Pt/SnO2 CO oxidation catalysts [2,3], Ag/MnO2 CO oxidation
catalysts [91, Pt/TiO2 [101 and Rh/TiO2 [11] CO hydrogenation catalysts, and for NO reduction
[ 12] and ethylene hydrogenation [3] catalysts, for example.

There are three general ways in which the two types of components in NMRO composite
materials can interact synergistically:
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All three
catalysts.

(a) one component may alter the properties of the other component,

(b) the two components may each provide independent catalytic functions in a complex
reaction mechanism,

(c) unique catalytic sites may be formed through combination of the two components at the
atomic level.

of these interactions may be important in low temperature CO oxidation over NMRO

In order to organize the material in this review, the effect of the noble metal on the oxide will
be discussed first, followed by the effect of the oxide on the noble metal, the interaction of the
noble metal and oxide to form unique catalytic sites, and the possible ways in which the CO

oxidation reaction is catalyzed by the NMRO materials.

METAL EFFECT ON OXIDE

Metals dispersed over metal oxides have been shown to catalyze the reduction of the oxide by
CO and H2: Ru catalyzed reduction of Fe oxide [13], reduction of SnO2 catalyzed by various
metals [2,14], Pt catalyzed reduction of various metal oxides [15-17], Pd catalyzed reduction of
various oxides [16], and Rh catalyzed reduction of TiO2 [ 18]. In some cases, interaction with the
noble metal can stabilize reduced oxide species against reoxidation [17]. In other cases, the
reoxidation of the reducible oxide can be catalyzed, for example, Pd catalyzed oxidation of SnO2

[2]. For H2 and 02, at least one function of the metal in catalyzing oxide reduction involves

catalyzing dissociation of the diatomic molecules during their dissociative adsorption. For
adsorbed CO, H, and O on the metal, the oxidation and reduction reactions may occur at the
interface between the metal and the oxide. Defect sites in the oxide located at the metal-oxide

interface may participate in the reaction, for example, oxygen vacancies at the interface between Pt
and ceria [19]. Alternatively, adsorbed CO, H and O may "spillover" from the metal and move out
over the surface of the reducible oxide. Bond, et al. [3,2] proposed that the synergistic
enhancement of CO oxidation over Pd/SnO2 is due to spillover of both CO and O from the Pd onto
the SnO2, with reoxidation of the support being the slow step in the reaction. Studies of H

spillover include: Pt/SnO2 [20], Pt/TiO2 [21,22], Pt/ReOx/A1203 [23], and Rh/AI203 [24].

OXIDE EFFECT ON METAL

The effects of the oxide on the metal are more varied. Choice of the metal oxide affects the

dispersion of the reduced metal that can be achieved, for example, for Pd/SnO2 [2] and Ru [25].
The dispersion and distribution of metals between metal particles in bimetallic catalysts can also be
affected by the support, for example, for Rh/Au catalysts [26]. These effects indicate that there can

be significant interactions between the metal and the oxide support.

Except for gold, all of the "noble" metals can be oxidized to some extent under some
conditions - pretreatment conditions if not reaction conditions - even supported Pt [27]. Oxide
supports tend to stabilize the oxidized form of supported noble and base metals against reduction
treatments, for example, for Cu in Cu/ZnO [28-29], Pt on A1203 [30], Pt on SnO2 [31], Pd on

SnO2 [32], Ni on MgO/SiO2 [33]. Oxidation of large supported metal particles to form an oxide
that "wets" the supporting oxide, followed by re-reduction of the noble metal, can lead to
redistribution of the supported metal, [30]. Under severe oxidizing conditions, compound
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formation can occur betweenthe oxide form of the supportedmetal and the oxide support,
deactivatingthemetal[34].

For small,oxide-supportedmetalparticles,theelectronicstructureof the metal atoms may be
affected by the oxide, affecting the metal's catalytic activity. Doi and coworkers [25,35] found the
electronic structure of Ru atoms in CO hydrogenation to be markedly affected by metal oxide
supports: Ru atoms on basic oxides like MgO and TiO2 were electron rich but those on acidic

oxides such as silica-alumina and titania-alumina were electron deficient, affecting the yield of
hydrocarbons. In some cases, different phases of the reducible oxide interact with the noble metal

differently. Wolf and coworkers [36] compared Pt on the rutile and anatase phases of TiO2 and
found that CO adsorbed linearly on Pt on anatase and in the bridged mode on Pt on rutile, with the

Pt/rutile being more active for CO oxidation. SnO2 was determined to not be a direct catalyst but to
modify supported Pt and Pd in studies of electrochemical oxidation of methanol [37-39].

A major complication in analyzing such evidence of synergistic behavior over NMRO

materials is that the structure and composition of these composite materials can be quite
heterogeneous at the atomic level. This heterogeneity can be caused by a number of mechanisms,
and experimental determination of surface structure and composition at the atomic level is
extraordinarily difficult. Until this stage in the review, one may have inferred that the materials are

composed of metal particles in contact with a reducible oxide support, each component modifying
the other to some extent. This picture is accurate for some materials under some conditions.

However, direct intermixing of various forms of the two components can occur at the atomic level,
especially under reducing conditions. Under reducing conditions, the reducible oxide may be
reduced to the extent that suboxide species can diffuse into the metal or reduced completely such
that the parent metal of the oxide forms a metal alloy with the noble metal. This complexity is a
focus of the rest of this section and the next section.

Oxide or suboxide species can partially or completely cover the surfaces of supported metal
particles, as has been shown for Pt/TiO2 [62]. There are several possible mechanisms for this

"decoration" of supported metal particles by oxide species. One mechanism can be a gradual
growth of the oxide over the surface on the metal particle, or encapsulation," that is driven by
interfacial energies [40,41]. Another mechanism involves dissolution of suboxide species in the
metal under reducing conditions, followed by segregation to the surface of the metal under

oxidizing conditions, as Gorte [42] showed for Pt/TiO2 and Pt/Nb205 and Tang et al. [43] showed
for Pt/TiO2. Under severe reducing conditions, the oxide may be reduced to the metal and form an

alloy with the supported noble metal [4]. Under subsequent oxidizing conditions, segregation may
occur to produce oxide species on the surface of the noble metal or redistribute the noble metal over
the surface of the oxide.

Once decoration of the metal with oxide species occurs, the oxide species can affect catalytic
activity by serving as an inert agent that blocks and deactivates sites on the metal or by modifying
the electronic structure and catalytic properties of neighboring noble metal atoms. White and

coworkers [44,45] found that TiOx on Rh both blocks CO adsorption by covering some Rh sites

and modifies CO adsorption on other Rh sites. In a calorimetric study of CO and H adsorption
over Pt on the anatase phase of TiO2, Herrmann, et al. [46] found that the reduced support
modifies the chemical properties of the surface Pt atoms. Sadeghi and Henrich [47] found
evidence for charge transfer from reduced Ti cations to Rh atoms in Rh/TiO2.

FORMATION OF UNIQUE SITES

Alloy formation between the noble metal and the parent metal of the reducible oxide can form

unique catalytic sites, either through modification of the alloyed noble metal atoms or formation of

sites involving both types of metal atoms. In previous work [4] and at this meeting [159],
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Hoflund andcoworkersprovidedevidencefor Pt-Snalloy formationin Pt/SnO2catalysts.Pt-Sn
alloysaswell asSn-aluminatesandSnOhavebeenfound in Pt/Sn/AI203hydrocarbonreforming
catalysts[48]. McCabeandMitchell [66,67]demonstratedsynergisticCOoxidationactivity with
Pt-Ag alloys,andOh andCarpenter[68] did sofor Pt-Rhalloys.

Unique catalyticsitesmayalsoform at theinterfacebetweenthenoblemetal andits oxide
supportandbetweenthe metal andpartialoverlayersof oxide or suboxideon themetal. TiOx
overlayershavebeenproposedto catalyzethedissociationof CO during CO hydrogenationto
methaneandhigherhydrocarbonsfor Pt [42,43,45,47,49-52]andRh [45,50,53,54].Onemodel
is thattheoxygenendof COis attractedto theoxide,weakeningthebondbetweentheoxygenend
andthe carbonend bondedto the metal [8]. The interactionbetweenTiOx overlayersand Pd
catalyzestheformationof methanolduringCOhydrogenation[55].

FUNDAMENTAL STUDIESOFNMROMATERIALS

Becauseof thecomplexinteractionspossiblein NMRO materials,interactionswhich give
s ner istic roperties,awidevarietyof experimentaltechniquesarerequiredtothemtheir unique y g P. . • • " ch asthoseusedin

analyzethe materialsandtheir properties. Surfacesensmvetechmques,su
references[31,47,56-58]thatcanbeusedto probethesurfacecompositionand structureof the
materialsarenecessary,in additionto kineticmeasurements.Althoughporous,high-surface-area
catalystsaredesiredin applications,"model"systemscomposedof onecomponentdistributedover
the flat surfaceplaneof a largesinglecrystal of the othercomponentareoften preferablefor
fundamentalstudies[10,42,59-61].

COOXIDATIONAND NMROCATALYSTS

Duringoxidationof COby 02, whetherin thegas-phaseoroveracatalystsurface,two basic
stepsmustoccur: dissociationof the02 moleculeandformationof an O-CObond. Thesetwo
stepsusuallyoccur in separateevents.Over thesurfaceof acatalyst,then,02 must adsorband
dissociateandCOmustadsorbnextto andreactwith anOatom[63].

Over zero-valentnoblemetals(on inert,nonreducible-oxidesupports),CO and02 compete
for thesamesiteson thesurface.Low temperatureactivity isminimalbecauseCOcoversthemetal
surfaceandinhibits 02 adsorption.CO dominatesthe surfacebecause02 adsorptionhasmore
stringentopensiterequirementssinceit mustdissociateandbecause02 adsorptionprobabilitiesor
"sticking coefficients"on baremetal surfacesareat leastanorderof magnitudelower thanCO
stickingcoefficients[64,65].

Over metal oxide surfacesthe picture is morecomplex. However, low temperatureCO
oxidation activity is alsominimal over simpleoxide surfaces,primarily becauseof the strong
bondingof oxygento thesurface[63].

NMRO materialssuchasPt/SnO2aresynergisticcompositematerialswith significant low
temperatureCO oxidationactivity. Thelimiting stepswith conventionalcatalystsinvolveoxygen:
competitionbetween02 andCO adsorptionovermetalcatalystsandremovalof oxygenboundto
oxide catalysts. Thus, wecanpostulatethat oneor both of theseprocessesarefacilitated over
NMRO catalysts: 02 adsorptionanddissociationis enhancedrelative to CO adsorptionand/or
oxygencan be removedfrom the oxide surfacerelatively easily. Evidence that competition
betweenCO and02 is reducedoverNMRO materialscomesfrom kinetic studiesthat showthat
CO doesn'tinhibit the reaction significantly, as it doesover noblemetalssupportedon non-
reducible,inert supports[71,77,78].
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An obviousway that the first process, 02 adsorption and dissociation, can be enhanced
relative to CO adsorption is provision of separate but neighboring sites for the two molecules.

Hoflund and coworkers [4, 159] showed that a Pt-Sn metal alloy can form in Pt/SnO2 during
reducing pretreatments, and NASA Langley researchers [76] showed that a reducing pretreatment is

required to obtain high activity over Pt/SnO2. If a Pt-Sn alloy were stable during low temperature
CO oxidation, competition between CO and 02 could be reduced if CO adsorbed on Pt atoms and
02 adsorbed on Sn atoms or a site consisting of a Pt and an Sn atom. Such a scenario is similar to
the explanations proposed by McCabe and Mitchell [66,67] to explain enhanced CO oxidation

activity over Pt/Ag/AI203 and by Oh and Carpenter [68] for enhanced CO oxidation activity overPt/Rh/A1203.

The second process mentioned above is that CO adsorbs on noble metal atoms and then

removes oxygen from neighboring regions of reducible oxide. Wolf [36,72] and coworkers

proposed that O transfer from the rutile form of TiO2 participates in CO oxidation over Pt/TiO2 as
well as the usual Langmuir-Hinshelwood mechanism over Pt. Jun, et al. [73] found that O
chemisorbed on Ag/SnO2 participated in the complete oxidation of ethylene and lowered the
selectivity for ethylene oxide.

Both of the processes just discussed involve reaction at atomic interfaces between the two
components of the composite materials. In either case, the preparation and pretreatment of the
catalyst to obtain intimate contact between the noble metal and the reducible oxide becomes critical.
Further work is required to determine the importance, in determining this atomic or interfacial
contact, of alloy formation between the noble metal and the parent metal of the reducible oxide
(e.g., Pt-Sn alloy formation) and the importance of suboxide species on noble metal surfaces. In
addition to catalyst preparation and activity testing, fundamental studies of the solid state
thermodynamics and kinetics of NMRO materials are required.

A third possibility is that one of the components serves as a reservoir, or "port hole" in the
terminology of Boudart and H. S. Taylor [160], which supplies one of the reactants to the other

component. Bond and coworkers [2,3] proposed that spillover of both CO and O from noble
metal to the oxide is important in low temperature SnO2-based NMRO catalysts. A different
scenario was proposed by Imamura, et al. [9] to explain low temperature CO oxidation over
Ag/MnO2. They proposed that the role of MnO2 is to serve as a readily re-oxidizable reservoir of
O that keeps Ag supplied with O and in an oxidized state. They further proposed that CO was
oxidized by reaction with the Ag oxide. One might call this proposal "reverse" spillover from theoxide support to the metal.

In addition to eliminating competition between CO and 02 by the presence of separate
adsorption sites, 02 dissociation may be facilitated over NMRO catalysts. Booker and Keiser [70]
showed that surface hydroxyl groups on Rh/AI203 can oxidize adsorbed CO to CO2. Croft and

Fuller [5] showed that the presence of gas-phase H20 can enhance the activity of Pd/SnO2.
Studies by Schryer and coworkers at NASA Langley [76] have shown that the presence of H20
can affect the behavior of Pt/SnO2 catalysts. The way in which H20 might participate is suggested
by the mechanism of homogeneous CO oxidation in the gas phase [63,69]. In the gas phase,
traces of H2 or H20 serve as a catalyst of the CO oxidation reaction. 02 is dissociated by collision
with H to form OH and O radicals. CO is oxidized by collision with OH radicals to form C02 and
H, not by collision with O atoms. Oxide surfaces are usually found in a hydroxylated and
protonated state, even when H20 has not been added to a reactant stream deliberately [32,74,75,
161 ]. Hoflund and coworkers obtained evidence for the presence of hydroxyl groups on Pt/SnO2
[159]. Hydroxyl groups and protons on the reducible-oxide surface mi ht articl ate
the dissociation of 02. Finall the s i " " . . . g P "p by catalyzing

y, po s blllty that CO is oxidized over NMRO catalysts by surface
hydroxyl groups, as in the homogeneous reaction mechanism, must also be considered [76].
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Determiningwhich of theprocessesproposedabove-or an entirely unexpectedprocesihi1 w tern raturesoverNMROmaterialswill takeful_thercarefulwork..Someo
oxidizesCOat o . pe - , .... ,--,.n_ the wo timulating, uver _u co-preclpltateu w t
recent work involving Au cata_yst_ r-_..v ....... rk s
variety of base metal oxides, Haruta, et al. [79] obtained complete oxidation of 1% CO in air at -

70°C (66 cm3/min over 0.2 g). Huber, et al. [80] observed reaction between CO and 02 in a

matrix with Au at 4 K.
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Table 1. Gas Sensor Applications

CO sensor [84]
II

,, [851
,, [86]

[871
H2 sensor,, 2 [_881

89l
gas

sensor [90]

,, [91]

11

,, 931

Reducing and

oxidizi_

02 sensor

,.rence

[961

[97]
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Table 2. CO Oxidation Applications

,Application

CO + 02 for CO2
laser

CO+ 02
tt

Catalyst
Pt/SnO2

Pd/SnO2
(Pt or

Pd)/Cr/(preferably
Mn)/SnO2
(Pt and/or

Pd)/(optionally Fe,
Ru, Cu, or

Re)/(A1203,TiO2,
or MgO)
(Pt, Pd, Rh, or
Ir)/(A1203or SnO2)
Cu/CuO

Pt/CeO2/Sn02
Pt/CeO2

r'grio2
Au/(oxide of Fe,
Co, or Ni)

AgMnCh

Reference

[1,77,98,
99]

[1,2,100]

[101]

[102]

[103]

[99]

[104]

[19]

[36,72

[79]

[91

Table 3. NO Reduction and Three.Way Automotive Applications

Application
CO + NO

CO + NO

CO + NO & CO +
02

Three-way

automobile catalysts

[ Catalyst [
Pd/SnO2

r't/v2OqTiOz
(Pt, Pd, Rh, or
Ru)/(Mo, W, or V

oxide)/TiO2

Pt/Pd/Rh/(various
reducible

oxides)/Al203

Reference

[12]
[105]
[106]

[107-110]

Table 4. Hydrocarbon Complete Oxidation Applications

appncanon

Catalytic heater
Catalyst

Pt/(Sn, Y, or rare-
earth)

Pd/Pt/(Ca-

aluminate)/SiO2/
TiO2

Reference

[111]

[112]
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Table

Application

Ethylene oxidation
Propylene oxidation

II

5. Hydrocarbon Partial Oxidation Applications

Catalyst [ Relerence

Ag/SnO2 [73]
Pd/TiO2, Cu/TiO2 [113]

Pt/B a (S n0.6In0.4)O3 [ 114]

A Dplication

CO2 + H2, methane
formation

CO2 + H2,
nnsnecified oroducts

Table 6.

I

CO2 Hydrogenation Applications

Catalyst I

Rh/(A1203, MgO,
C, ZrO2, TiO2,

ZnO,A120_)
RlcrIQ

Kelerence

[1211

[122]

Table 7. CO Hydrogenation Applications

Application

CO + H2,

unsp,,ecified products

CO + H2, methane
formation,

CO + H2, olefin

synthesis
CO + H2, Fischer-

Tro,p, sch synthesis

CO + H2, liquid-

phase reaction

Catalyst

(Rh, Pd, or
Ru)/I'iO2

RhffiO2
Ru/Fe/TiO2

Ru/(MgO, TiO2, or
A1203/rio2)
Rh/TiO2
Pt/Ti02
Pt/(TiO2 or Nb205)

PVTiO2
(Rh, Ir, Ru)/TiO2
Ru/I'iO2

Ru/Fe/I'iO2,
Fe/l'iO2

Co/Re/TiO2

Co/Ru/TiO2

Ru/(Nb, Ta, or V
oxide)/TiO2

Ru/(TiO2 or Nb205)

[ Relerence
[74, 123]

"122,1241

125,126]

[351

53,54]

[1271

[421

10,43]

128]

[1291

[131

[1301

[131]

[1321

[133]
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Table 8. Alcohol Synthesis, Methanol Decomposition Applications

Application

CO + H2, methanol

synthesis

vt

CO + H2, CH4 and

methanol synthesis
CO + H2, alcohol

(ethanol) synthesis
Methanol

decomposition to
CO + H2

Catalyst

CtCZrO2

CtCZnO

(Pt, Rh, or Ir)/(MgO
or ZnO)

Pd/(TiO2 or Nd203)

Pd/(TiO2 or SiO2)

La203 -promoted-
(Rh or Rh/Pt)/TiO2

Ni/SiO2/MgO

Reference

1134,135]

[28,29,136,
137,158]

[11]

I138]

[55]

[139]

[33]

Table 9.

Application

Refo_,-min_

Hydrogenolysis of
alkanes

Isomerization

Paraffin
isomerization

Dehydrogenation

Hydrocarbon Reforming and Related Applications

Catalyst

Pt/Sn/A1203

Pt/Ni-sulfide/SnO2
Ru/(various metal
oxides)

Pt/S-containing-
halide/7_aO2

Pt/Rh/halide/SnO2

Reference

[48,140]

[141]

[25]

[142,143]

[144]

Pt/ZnO/S nO2 [145 ]

Pt/Li/GeOx/SnO2 [ 146]
Dehydrocyclization Pt/Co/S nO2/A1203 [ 147]

Hydrop. rocessing of Pt/Co/CL/SnO2 [ 148]
aromatics to cyclo-

paraffins
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Table 10. Electrochemical and Photochemical Applications

Application Catalyst Reference
Methanol electro- (Pt or Pd)/SnO2 [37,38,39]

oxidation

Fuel cell (air Pt/SnO2 [39,149,150,151 ]

electrode)

02 & C12 evolution

Photocatalytic lignin
oxidation

Pt/Sb-promoted-
SnO2

[56,152]

(Pt, Pd, or [153]
Ru)/SnO2

(Pt, Ag, or Au)/TiO2 [ 154]

Electrosynthesis of Pt/Sb2Os/SnO2 [155]

peroxides
[156]Photoassisted H2

production

CdS/SiO2 plus
Pt/(TiO2, ZnO,

SnO2, or WO_)

Ag/Pd_iO2Photography [157]

Table 11. Miscellaneous Applications

Application

Vinyl acetate

production
Alcohol

oxycarbonylation
CO + H20, light

olefin synthesis
CO + H20, water

gas shift
Electroless

deposition of
Pd/SnOx for

electroplatin[_

CO chemisorption

Catalyst

Pd/Au/SnO2

Pd/V2Os/TiO2

Rh/Nb205

CwZnO

Pd/SnOx

Reference

[1151

[116]

[117]

[118]

[1191

Os/TiO2 [ 120]

Unknown reaction RIVAu/(SiO2, TiO2, [26]

or A1203)
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